
1

Constrained quadratic optimisation

[Nematrian website page: ConstrainedQuadraticOptimisation, © Nematrian 2015]

Abstract

These pages set out the mathematics behind constrained quadratic optimisation, as implemented
using a variant of the Simplex algorithm, and this sort of optimisation relates to traditional
Markowitz (i.e. mean-variance) portfolio optimisation.

Contents

1. The canonical problem
2. Solving the canonical problem
3. Setting up the ‘super’-problem
4. Updating the tableau
5. Finishing the algorithm
6. Portfolio optimisation

Tools
References

1. The canonical problem

Constrained quadratic optimisation involves finding the value of a vector 𝑥 = (𝑥1, … 𝑥𝑛)

𝑇 that
minimises a given penalty function 𝐿(𝑥) (or maximises it, the two are interchangeable by replacing 𝐿

with – 𝐿) subject to some (normally linear) constraints, where:

𝐿(𝑥) = 𝐵 + 𝐶𝑥 + 𝑥𝑇𝐷𝑥

The constraints, in canonical form, are normally of two types. There are 𝑛 lower limit constraints of
the form 𝑥 ≥ 0 (by which we mean that each 𝑥𝑖 ≥ 0 for 𝑖 = 1,…𝑛) and there are 𝑚 further
constraints of the form 𝐴𝑥 ≤ 𝑃 (by which we mean that each ∑ 𝐴𝑖𝑗𝑗 𝑥𝑗 ≤ 𝑃𝑖 for 𝑖 = 1,…𝑚).

In these definitions 𝐵 is a scalar, 𝐶 is a vector (or 1 × 𝑛 matrix) and 𝐷 is an 𝑛 × 𝑛 symmetric matrix,
which is assumed to be non-positive definite if the problem is a minimisation, and non-negative
definite if the problem is a maximisation. A non-negative definite (symmetric) matrix is one whose
eigenvalues are all at least zero.

The value of 𝐵 is irrelevant to the optimal value of 𝑥 so without loss of generality can be taken as
zero.

Problems with lower limits on each 𝑥𝑖 that are non-zero, say 𝑥 ≥ 𝑞 can be restated into the above
form by a change of variables to 𝑦 = 𝑥 − 𝑞 ≥ 0 resulting in a new penalty function:

𝐿̂(𝑦) = 𝐵 + 𝐶(𝑦 − 𝑞) + (𝑦 − 𝑞)𝑇𝐷(𝑦 − 𝑞)
𝐿̂(𝑦) = 𝐵̂ + 𝐶̂𝑦 + 𝑦𝑇𝐷̂𝑦

Here 𝐿̂(𝑦) = 𝐵̂ + 𝐶̂𝑦 + 𝑦𝑇𝐷̂𝑦 where 𝐵̂ = 𝐵 + 𝐶𝑞, 𝐶̂ = 𝐶 − 2𝑞𝑇𝐷 and 𝐷̂ = 𝐷. We therefore merely
need to alter 𝐶 appropriately, and unwind the change of variables at the end of the optimisation
process.

http://www.nematrian.com/ConstrainedQuadraticOptimisation.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation1.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation2.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation3.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation4.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation5.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation6.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisationTools.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation6.aspx

2

Problems that involve ‘greater than’ or ‘equals’ type constraints, e.g. 𝐴𝑥 ≥ 𝑃 or 𝐴𝑥 = 𝑃 as well as
(or instead of) ‘less than’ type constraints can be converted into the above canonical form by:

(a) converting each ‘equality’ constraint into two equivalent constraints, one being the
corresponding ‘greater than’ constraint and one being the corresponding ‘less than’
constraint, altering 𝑚 accordingly (since if 𝐴𝑥 = 𝑃 then 𝐴𝑥 ≥ 𝑃 and 𝐴𝑥 ≤ 𝑃, and then

(b) inverting each ‘greater than’ constraint present into a ‘less than’ constraint by noting that if

∑ 𝐴𝑖𝑗𝑥𝑗𝑗 ≥ 𝑃𝑖 then −∑ 𝐴𝑖𝑗𝑥𝑗𝑗 ≤ −𝑃𝑖.

2. Solving the canonical problem

We can solve the canonical problem using a variant of the Simplex algorithm, as follows:

(a) We use the method of Lagrange multipliers, where 𝜆 = (𝜆1, … , 𝜆𝑚)
𝑇 and 𝜇 = (𝜇1, … , 𝜇𝑛)

𝑇
are the Lagrange multipliers corresponding to the two sets of constraints 𝐴𝑥 − 𝑃 ≤ 0 and
𝑥 ≥ 0 respectively.

(b) We introduce further ‘slack’ variables, 𝑆 = (𝑆1, … , 𝑆𝑚)

𝑇 for the constraints 𝐴𝑥 ≤ 𝑃, i.e. we
define 𝑆 = 𝑃 − 𝐴𝑥 ≥ 0.

(c) Application of the Kuhn-Tucker conditions then implies that the canonical problem can be

solved using a variant of the Simplex algorithm, using a Simplex ‘tableau’ (bearing in mind
that 𝐷𝑇 = 𝐷) as follows, see e.g. Taha (1976):

(
−2𝐷
𝐴

−𝐼
0

0
𝐼
 𝐴
𝑇

0
)(

𝑥
𝜇
𝑆
𝜆

) = (𝐶
𝑇

𝑃
)

subject to 𝜇𝑖𝑥𝑖 = 0 = 𝜆𝑗𝑥𝑗 for 𝑖 = 1,…𝑛, 𝑗 = 1,… ,𝑚 and 𝜆, 𝜇, 𝑥, 𝑆 ≥ 0.

Loosely speaking, the algorithm works as follows:

(i) We start with a feasible solution (i.e. a solution that satisfies all of the constraints), which
will be characterised by some value of 𝐿;

(ii) We then identify a methodical way of improving on 𝐿 (if possible), whilst staying within the
set of feasible solutions; and

(iii) We iterate (ii) until we run out of ability to improve 𝐿.

Conveniently, because of the convex nature of the feasible solution set, the Simplex algorithm is in
this case guaranteed to converge. Moreover, because the loss function is quadratic and positive
definite, it converges to the global optimum and not just a local optimum.

The relative ease with which it is possible to solve quadratic optimisation problems is one reason
why quadratic utility functions are so commonly used in quantitative finance, see Kemp (2010).

However, there is one complication. For the algorithm to work properly we need to start with a
‘feasible’ solution – if we start with one that isn’t feasible then the algorithm sometimes converges
to a feasible solution but sometimes it doesn’t. We do not necessarily end up with a feasible solution
merely by starting with 𝜆, 𝜇, 𝑥, 𝑆 = 0, since the left hand side of the tableau then equates to zero,

http://www.nematrian.com/ConstrainedQuadraticOptimisation1.aspx
http://www.nematrian.com/References.aspx?Ref=Taha1976
http://www.nematrian.com/References.aspx?Ref=Kemp2010

3

but the right hand side doesn’t. What we therefore need to do is to add additional variables to
create a superset of the original optimisation problem for which it is easy to identify a (basic)
feasible solution, the additional variables being set up in such a way that when we have converged
on the solution to the superset problem we will then either:

(1) Have reached a feasible solution to the original problem, in which case we have the solution;
or

(2) We still have an infeasible solution, in which case we can conclude that there was no

feasible solution to the original problem.

3. Setting up the ‘super’-problem

To set up the superset of the original problem as described in Solving the canonical problem, we
multiply through each row in the above tableau (both left and right hand sides) by −1 if the relevant
element of 𝐶𝑇 or 𝑃 is negative. This means that the right-hand side of the tableau is all now non-
negative. Simultaneously we introduce a further series of ‘artificial’ variables 𝑅 =

(𝑅̅1, … , 𝑅̅𝑛, 𝑅̂1, … , 𝑅̂𝑚)
𝑇

, all elements of which are ≥ 0, the first 𝑛 elements of which, 𝑅̅, are artificial

variables corresponding to the 𝑥𝑖 and the remaining 𝑚 elements are artificial variables
corresponding to the 𝑆𝑗. To be more precise, if we want the speediest algorithm, we only introduce

only such elements of these variables that are needed to achieve a starting feasible solution.

The starting solution is then given by 𝑥, 𝜇, 𝜆 = 0 and:

𝑅̅𝑖 = 𝑎𝑏𝑠((𝐶
𝑇)𝑖)

(𝑆𝑗, 𝑅̂𝑗) = {
(𝑃𝑖 , 0), 𝑃𝑖 ≥ 0
(0,−𝑃𝑖), 𝑃𝑖 < 0

The starting ‘basic’ variables, i.e. those whose opening values are greater than zero are each of the

𝑅̅𝑖 and whichever of the 𝑆𝑗 and the 𝑅̂𝑗 is non-zero in the above formulae.

The complete starting tableau is then:

(
−2𝐷∗

𝐴∗∗

−𝐼∗

0

0
𝐼∗∗
 (𝐴

𝑇)∗

0

𝐼
0

0
𝐼
)

(

𝑥
𝜇
𝑆
𝜆
𝑅̅
𝑅̂)

= ((𝐶

𝑇)∗

𝑃∗∗
)

Subject to 𝜇𝑖𝑥𝑖 = 0 = 𝜆𝑗𝑥𝑗 for 𝑖 = 1,…𝑛, 𝑗 = 1,… ,𝑚 and 𝜆, 𝜇, 𝑥, 𝑆 ≥ 0 where (.)∗ means multiply

through relevant row of the matrix by −1 if (𝐶𝑇)𝑖 < 0, (.)∗∗ means multiply through relevant row of
the matrix by −1 if 𝑃𝑗 < 0 and 𝐼 is the 𝑚 ×𝑚 identity matrix with each 1 replaced by a zero if the

corresponding value of 𝑃𝑗 is greater than zero.

N.B. We have ignored for the purposes of this discussion the possibility that any of the entries on the
right-hand side of the tableau are identically zero. This degenerate case can be handled by adding a
very small number to make them positive.

We need to know which variables ‘correspond’ to each other (i.e. appear jointly in the constraints
𝜇𝑖𝑥𝑖 = 0 = 𝜆𝑗𝑥𝑗, although these correspondences do not change as the iteration progresses.

http://www.nematrian.com/ConstrainedQuadraticOptimisation2.aspx

4

In addition to the Tableau, which is an (𝑛 + 𝑚) × (3𝑛 + 3𝑚) array we also need to keep track of the
following as the iteration proceeds:

Two rows:

(a) BasicRow, indicates with, say, a 1 whether the variable in question is ‘basic’

(b) ObjectiveRow, initially calculated as:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑅𝑜𝑤(𝑘) = {
∑ 𝑇𝑎𝑏𝑙𝑒𝑎𝑢(𝑞, 𝑘)

𝑛+𝑚

𝑞=1
, 𝑘 = 1,… ,2𝑛 + 2𝑚

0, 𝑘 = 2𝑛 + 2𝑚 + 1,…3𝑛 + 3𝑚

Two columns:

(c) SolutionColumn, contains the current feasible solution, i.e. the right hand side of the above
tableau ‘equation’; and

(d) BasicColumn, contains integers indicating to which variables the entries in the

SolutionColumn currently apply (and thus which variables are basic, so there is some overlap
here with BasicRow). BasicColumn starts as:

𝐵𝑎𝑠𝑖𝑐𝐶𝑜𝑙𝑢𝑚𝑛(𝑖) = 2𝑛 + 2𝑚 + 𝑖 𝑖 = 1,… , 𝑛

𝐵𝑎𝑠𝑖𝑐𝐶𝑜𝑙𝑢𝑚𝑛(𝑛 + 𝑗) = {
2𝑛 + 𝑗, 𝑃𝑗 ≥ 0

3𝑛 + 2𝑚 + 𝑗, 𝑃𝑗 < 0
 𝑗 = 1,…𝑚

4. Updating the tableau

We update the tableau iteratively (probably only up to some upper limit of number of iterations, in
case there is an error in the computation), and we stop when there is no change to the tableau at a
given iteration.

To do this we need to identify which variable ought ideally to enter the feasible solution, i.e. to
become a ‘basic’ variable, and which variable it should replace, i.e. which one is ceasing to be a basic
variable. We need to do these simultaneously, since the constraints mean that only certain
combinations of variables can enter and leave at the same time.

This may be done by identifying the largest positive value of the ObjectiveRow for a column
(variable) which is not currently basic (but only if either the current corresponding variable is non-
basic, so that the joint constraint of the form value 𝜇𝑖𝑥𝑖 = 0 = 𝜆𝑗𝑥𝑗 is still satisfied, or if the

corresponding variable is basic then the two can be swapped over and still improve the objective
function) and if there is another basic variable, which if removed from the feasible set at the same
time improves the objective function.

As long as we identify a one entering basic variable (column) and one exiting basic variable (column)
as above, we pivot the Tableau, ObjectiveRow and SolutionColumn around their intersection and we
update the BasicRow and BasicColumn accordingly.

As mentioned above, sometimes we need to replace zeros with very small positive numbers to avoid
the tableau becoming degenerate.

5

5. Finishing the algorithm

The algorithm stops when there is no longer any valid combination of entering and leaving basic
variables that improves the objective function. If the corresponding solution to the original problem
is still not feasible (i.e. there are still some of the additional artificial variables introduced when
setting up the super-problem that are greater than zero) then the original problem didn’t have a
feasible solution. Otherwise, the solution to the original problem is the same as that for the super-
problem. If we introduced a change of variables 𝑦 = 𝑥 − 𝑞 at the start of the problem because the
lower limits on 𝑥 were not 0 then we need to unwind this change of variables, as the super-problem
solution is defined in terms of 𝑦 not 𝑥.

6. Portfolio optimisation

In a (mean-variance) portfolio optimisation context, the objective that we typically want to maximise
is the following (or some monotonic equivalent):

𝑈(𝑥) = 𝑟. 𝑥 − 𝜆(𝑥 − 𝑏)𝑇𝑉(𝑥 − 𝑏)

Here 𝑥 are the portfolio weights (so typically we impose at least the following constraint ∑ 𝑥𝑖𝑖 = 1),
𝑏 is the benchmark (or ‘minimum risk’ portfolio), 𝑟 is a vector of assumed returns on each asset and
𝑉 is the covariance matrix (= 𝑠𝑇𝐶𝑠, where 𝑠 is the vector of risks on each asset class, here assumed
to be characterised by their volatilities, as this approach is merely a mean-variance one, and 𝐶 their
correlation matrix).

Nematrian website tools

The main tools that the Nematrian website makes available for constrained quadratic optimisation
are:

(a) Constrained Quadratic Optimiser. All purpose constrained quadratic optimiser.

(b) Constrained Quadratic Portfolio Optimiser. Equivalent tool with inputs specifically tailored to
the portfolio optimisation problem.

(c) Reverse Quadratic Optimiser. Works out the ‘implied alphas’, i.e. the return assumptions

that need to be held for a portfolio to be optimal (ignoring constraints), given active
positions, standard deviations, a correlation matrix and a trade-off factor (i.e. risk aversion
factor) that corresponds to the investor’s chosen trade-off between return and risk. Please
bear in mind that if a given set of returns, 𝑟, is optimal in this context then so are 𝑎𝑟 + 𝑏 for
any constant (asset class independent) values for 𝑎 and 𝑏.

(d) Tools for plotting efficient frontiers, including MnPlotQuadraticEfficientFrontier and

MnPlotQuadraticEfficientPortfolios, which plot the efficient frontier (in risk-return space)
and the portfolios making up the efficient frontier.

References

Kemp, M.H.D. (2010). Extreme Events: Robust Portfolio Construction in the Presence of Fat Tails. John
Wiley & Sons [see ExtremeEvents for further details]

Taha, H.A. (1976). Operations Research – An Introduction. Macmillan

http://www.nematrian.com/MnConstrainedQuadraticOptimiser.aspx
http://www.nematrian.com/MnConstrainedQuadraticPortfolioOptimiser.aspx
http://www.nematrian.com/MnReverseQuadraticPortfolioOptimiser.aspx
http://www.nematrian.com/MnPlotQuadraticEfficientFrontier.aspx
http://www.nematrian.com/MnPlotQuadraticEfficientPortfolios.aspx
http://www.nematrian.com/References.aspx?Ref=Kemp2010
http://www.nematrian.com/ExtremeEvents.aspx
http://www.nematrian.com/References.aspx?Ref=Taha1976

6

