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Abstract 
 
In this paper we introduce four ways of estimating probability distribution parameters that target a 
good fit to a user selected part of the distributional form (e.g. one or both tails). We analyse the 
characteristics of the resulting parameter estimates for a wide range of commonly used probability 
distributions. Three of the methodologies reviewed are similar, are motivated by maximum 
likelihood principles and give the same results as traditional (unweighted) maximum likelihood 
estimation in the special case where all quantiles within the distributional form are given equal 
weight. The fourth methodology involves a direct weighted least squares fit to a suitable quantile-
quantile plot. 
 
1. Introduction 
 
Traditional parameter estimation techniques generally give equal weight to every observation in the 
relevant observation set. For example, if observations 𝑋1, 𝑋2, … , 𝑋𝑛 come from a normal distribution 
𝑁(𝜇, 𝜎2) then commonly the mean, 𝜇, is estimated as the unweighted average of the observations, 
i.e. by �̂� = ∑ 𝑋𝑖

𝑛
𝑖=1 𝑛⁄ . Two common ways of deriving parameter estimates are least squares and 

maximum likelihood. In this example, least squares involves selecting �̂� to minimise ∑ 𝐶𝑖
𝑛
𝑖=1  where 

𝐶𝑖 = (𝑋𝑖 − �̂�)
2 and maximum likelihood involves selecting �̂� to minimise ∑ 𝐶𝑖

𝑛
𝑖=1  where 𝐶𝑖 =

− log 𝑓(𝑋𝑖|𝜇 = �̂�) (𝑋𝑖 − �̂�)
2 and 𝑓 is the probability density function. The two happen in this 

example to  produce the same estimate, namely the unweighted average as above. 
 
It is relatively straightforward to modify these approaches to give greater weight to different 
observations as long as the selection of the weights is not dependent on the ranking of the 
observation in the dataset. For example, we may have a time series of data which we are analysing 
for risk management purposes and we may believe that more recent data is more relevant to the 
estimation problem in hand. This can be done by altering the formula to be minimised to be 
∑ 𝑤𝑖𝐶𝑖
𝑛
𝑖=1  where the weights are suitably chosen (e.g. here giving greater weight to more recent 

observations) but the 𝐶𝑖 are otherwise unaltered. The 𝑤𝑖 might for example be chosen to exhibit an 
exponential decay backwards in time to give greater weight to more recent data. Formally this can 
be viewed as a Bayesian style approach where the 𝜇 for different observations come from different 
priors that (here) all have the same underlying mean but have varying underlying standard 
deviations, so we effectively place more credibility on some observations than on others when 
estimating the overall value of 𝜇. 
 
However, such an approach does not work if aim is to focus greater weight on a particular part of 
the distributional form, i.e. on a particular range of quantile values. For example, if we were merely 
to give a large weight to observations in the bottom quartile of the observation set and a small 
weight to the remainder of the observation set then the weighted mean as calculated above would 
be biased downwards relative to the true value characterising the distributional form. 
 
Why might we wish to focus on a particular area of the distributional form? Again risk management 
provides an obvious example. Typically risk managers are more interested in extreme outcomes 
(particularly downside extreme outcomes) than they are in more run-of-the-mill outcomes. Capital 
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requirements for financial institutions may target outcomes with a given low quantile, e.g. the 99.5th 
percentile 1 year Value-at-Risk (i.e. ‘1 in 200 year event’) targeted by the proposed Solvency II 
regulatory framework for EU insurers. Whilst practitioners often in practice assume a distributional 
family and fit to the entire dataset as above, this can often be inappropriate. For example, if we 
believe that drivers of extreme events are less likely to be present in more ‘normal’ circumstances 
then a distributional form estimated primarily from observations outside the relevant tail may be a 
poor guide to the distributional form within the tail. 
 
Practitioners cognisant of these issues may seek to use more complicated distributional families with 
additional shape parameters that mainly affect only the shape in the relevant tail. However, there 
are not many commonly recognised and easy to manipulate distributional families that have such 
characteristics. So it is more common for such practitioners to use Extreme Value Theory (EVT) 
techniques. For risk management purposes these generally involve assuming that the tail can be 
approximated by a generalised Pareto distribution (GPD) and selecting from this distributional family 
using equally weighted approaches applied to the concatenated dataset formed by discarding all 
observations outside the relevant tail1. However traditional EVT has some weaknesses: 
 
(a) Choice of where the tail starts is potentially arbitrary. In any case an all-or-nothing approach 

(in which data either is in the tail or it isn’t) potentially throws away data relevant to the 
estimation problem just outside the deemed start of the tail. 

 
(b) Whilst often the focus is on one of the tails of the distribution this is not always the case. It 

would be desirable to identify methodologies that allowed focus to be applied to any 
arbitrary part of the distributional form rather than to just one tail for a univariate 
distribution. For multivariate distributions we might want to be able to focus on some parts 
of the joint edge region more than others. 

 
(c) Using EVT as described above for risk management purposes involves a prior view that the 

tail of the distribution should be well modelled by a suitable member of the GPD family. 
Whilst theoretical arguments underpinning EVT indicate that commonly used distributional 
forms nearly always tend to such a distribution in their tail it is relatively easily to construct 
distributions which do not exhibit this property. EVT assuming a GPD form is, in essence, 
estimating the tail distributional form by applying a particular form of interpolation (if the 
quantile of interest is within the range of the observation set) or extrapolation (if it is 
outside the range of the observation set). There is no inherently good reason why, when 
applied to real-life data sets coming from an unknown distributional form, GPD based 
interpolation or extrapolation approaches will be more (or less) accurate than other any 
plausible approach to interpolation or extrapolation. The choice inevitably involves some 
application of judgement, i.e. some application of prior views. 

 
The aim of this paper is to introduce alternative more generalised parameter estimation approaches 
that as far as possible circumvent these issues. Whilst they share some similarities with EVT and may 
often in practice be applied in similar circumstances they in principle do not need to focus on 
extreme values and referring to them merely as variants of EVT may therefore be inappropriate. 
However, for convenience we will refer to the parameter estimates we propose as ‘tail weighted’ 

                                                           
1 There are two main EVT results namely ‘block maxima’ results (which involve the generalised extreme value 
distribution) and ‘peaks over thresholds’ results (which involve the generalised Pareto distribution). The latter 
are generally considered to be more applicable to risk management activities. Selection of the relevant 
member of the GPD family may be undertaken using so-called Hill estimators or other maximum likelihood 
style techniques. 
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parameter estimates since the most obvious area of application is where greater weight is given to 
the tail of a distribution. 
 
2. Reformulating maximum likelihood to depend on ranked data 
 
As an estimation approach, maximum likelihood has many attractive features. In principle it almost 
always provides unique parameter estimates2 that have desirable asymptotic properties3. It is a 
generic approach that can be applied to virtually any distributional family. In theory it can handle 
multi-parameter families (including cases where some or all of the parameters are not allowed to 
vary) as easily as it can handle single-parameter ones. For most commonly specified multi-parameter 
probability distributions it seems able to be implemented relatively robustly using practical 
computational techniques4. It is therefore natural to explore whether such an approach, with 
suitable modifications, can be applied to the task of creating tail weighted parameter estimates.  
 
Suppose we have a set of observations 𝑋1, 𝑋2, … , 𝑋𝑛 or when ordered 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛). 

Suppose that these are independent draws from a (continuous) probability distribution with 
probability density function 𝑓(𝑥|𝜃) and cumulative distribution function 𝐹(𝑥|𝜃) where each of 
these is parameterised by a parameter 𝜃 (which in general may be a vector, to cater for multi-
parameter families). Suppose we have an ordered set of values 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). 

 

Suppose we define the event 𝑌𝑟 as involving 𝑋(1) ∈ (𝑥(2), 𝑥(2) + 𝑑𝑥), 𝑋(2) ∈ (𝑥(2), 𝑥(2) + 𝑑𝑥), …, 

𝑋(𝑚) ∈ (𝑥(𝑟), 𝑥(𝑟) + 𝑑𝑥). For 𝑌1 to occur, i.e. for 𝑋(1) to lie between 𝑥(1) and 𝑥(1) + 𝑑𝑥 we need to 

have 0 observations in the range (−∞, 𝑥(1)), 1 of the 𝑛 observations in the range(𝑥(1), 𝑥(1) + 𝑑𝑥 )  

and the remaining 𝑛 − 1 observations in the range (𝑥(1) + 𝑑𝑥 , +∞). Therefore the probability of 

this occurring (for small enough 𝑑𝑥) is 𝑃(𝑌𝑟|𝜃) ≡ 𝑃(𝑋(1) ∈ (𝑥(1), 𝑥(1) + 𝑑𝑥)|𝜃) = 𝑝1𝑑𝑥 say, where: 

 

𝑝1 = 𝑛𝑓(𝑥(1)|𝜃) (1 − 𝐹(𝑥(1)|𝜃))
𝑛−1

 

 
More generally the probability of 𝑌𝑟 is 𝑝𝑟𝑑𝑥

𝑟 say, where: 
 

𝑝𝑟 = (
𝑛
𝑟
)𝑓(𝑥(1)|𝜃)…𝑓(𝑥(𝑟)|𝜃) (1 − 𝐹(𝑥(𝑟)|𝜃))

𝑛−𝑟
 

 

where  (
𝑛
𝑖
) =

𝑛!

𝑟!(𝑛−𝑟)!
 is the binomial coefficient. 

                                                           
2 A commonly used alternative approach is method of moments. If there are 𝑚 parameters to estimate then 
the method of moments approach involves choosing suitable parameter values that exactly fit the first 𝑚 
moments of a distribution, i.e. 𝐸(𝑋𝑟) for 𝑟 = 1,… ,𝑚. However, some families do not have sufficient numbers 
of finite moments to allow method of moments to be used. Even where the relevant moments do exist the 
relevant 𝑚 equations may not be uniquely solvable. 
3 As the sample size increases to infinity maximum likelihood estimation exhibits consistency (i.e. sequences of 
maximum likelihood estimators converge in probability to the value being estimated), asymptotic normality 
(i.e. they tend towards a normal distribution which has the mean equal to the value being estimated and 
covariance matrix equal to the inverse of the Fisher information ratio) and efficiency (i.e. no asymptotically 
other unbiased estimator has lower asymptotic mean squared error). 
4 Maximum likelihood involves identifying the global maximum of a function. For functions of more than one 
variable (as would be the case if we are estimating more than one parameter for a given distributional family) 
this can be inherently challenging computationally even if the function is continuous. Such a function can have 
many local maxima which the algorithm might select instead of the global maximum. However, it seems that in 
practice for most commonly specified multi-parameter probability distribution families the likelihood function 
is well enough behaved in this respect to allow standard maximisation algorithms to reach the global 
maximum given sensible selection of initial starting values, if the dataset is of a reasonable size.  
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The (unweighted) likelihood of the overall observation set is 𝐿 ≡ 𝑝𝑛 𝑑𝑥𝑛⁄ . Traditional maximum 
likelihood estimation involves identifying the value of 𝜃 that maximises 𝐿 or equivalently log 𝐿 as 𝐿 is 
positive and log(. ) is a monotonic function. 
 
The 𝑌𝑟 are nested, so if 𝑌𝑟 occurs then 𝑌𝑟−1 must also have occurred (although not necessarily vice 
versa). The probability of 𝑌𝑟 conditional on 𝑌𝑟−1 (for parameter choice 𝜃) is thus : 
 

𝑃(𝑌𝑟|𝑌𝑟−1, 𝜃) =
𝑃(𝑌𝑟, 𝑌𝑟−1|𝜃)

𝑃(𝑌𝑟−1|𝜃)
=

𝑝𝑟𝑑𝑥
𝑟

𝑝𝑟−1𝑑𝑥
𝑟−1

=
𝑝𝑟
𝑝𝑟−1

𝑑𝑥 

 

⟹ 𝑃(𝑌𝑟|𝑌𝑟−1, 𝜃) =
(
𝑛
𝑟
) 𝑓(𝑥(𝑟)|𝜃) (1 − 𝐹(𝑥(𝑟)|𝜃))

𝑛−𝑟

(
𝑛

𝑟 − 1
)(1 − 𝐹(𝑥(𝑟−1)|𝜃))

𝑛−(𝑟−1)
𝑑𝑥 

Suppose we define the event 𝑌0 to involve any outcome, so 𝑃(𝑌0|𝜃) = 1, and for this purpose view 
𝑥(0) as being equal to −∞. We may then express the likelihood of the overall dataset as follows: 

 

𝐿 =
𝑃(𝑌1|𝑌0, 𝜃)𝑃(𝑌2|𝑌1, 𝜃)…𝑃(𝑌𝑛|𝑌𝑛−1, 𝜃)

𝑑𝑥𝑛
 

 

⟹ log𝐿 =∑𝑟(𝑖)

𝑛

𝑖=1

=∑𝑘(𝑖)

𝑛

𝑖=1

+∑𝐶(𝑖)
∗

𝑛

𝑖=1

 

where: 

𝑟(𝑖) = log

(

 
 (1 − 𝐹(𝑥(𝑖)|𝜃))

𝑛−𝑖

(1 − 𝐹(𝑥(𝑖−1)|𝜃))
𝑛−(𝑖−1)

(𝑛 − 𝑖 + 1)

𝑖
𝑓(𝑥(𝑖)|𝜃)

)

 
 

 

 

𝐶(𝑖)
∗ = log

(

 
 (1 − 𝐹(𝑥(𝑖)|𝜃))

𝑛−𝑖

(1 − 𝐹(𝑥(𝑖−1)|𝜃))
𝑛−(𝑖−1)

(𝑛 − 𝑖 + 1)

𝑖𝑒𝑘(𝑛)
𝑓(𝑥(𝑖)|𝜃)

)

 
 

 

for arbitrary fixed 𝑘(𝑖). 

 
As ∑ 𝑘(𝑖)

𝑛
𝑖=1  is fixed, maximum likelihood estimation may be expressed as involving minimising  

∑ 𝐶(𝑖)
∗𝑛

𝑖=1 . This formulation involves elements that depend on the ordered data. This contrasts with 

the more usual formulation of maximum likelihood which involves minimising ∑ 𝐶𝑖
𝑛
𝑖=1  where 𝐶𝑖 =

− log 𝑓(𝑋𝑖|𝜇 = �̂�) and depends merely on the unordered data. 
 
3. Introducing ranking dependent weights 
 
As noted previously, to introduce weights into maximum likelihood in the case where weights are 
not ranking dependent involves minimising ∑ 𝑤𝑖𝐶𝑖

𝑛
𝑖=1  for suitably chosen 𝑤𝑖. One way of introducing 

weights into maximum likelihood in cases where the weights are ranking dependent is instead to 
minimise ∑ 𝑤(𝑖)

∗ 𝐶(𝑖)
∗𝑛

𝑖=1  for suitably chosen 𝑤(𝑖)
∗ . For example we might give a weight of 1 to any 

observation in the lower quartile and a weight of zero to any observation in the upper three 
quartiles if we wanted to identify a fit that targeted behaviour in the lower quartile and was 
indifferent to fit elsewhere. We might call this approach tail weighted maximum likelihood 
estimation (TWMLE). 
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As characterised above, the 𝐶(𝑖)

∗ ’s are not independent of choice of 𝑘(𝑖). However, choice of 𝑘(𝑖) does 

not actually affect the resulting TWMLE estimator since: 
 

∑𝑤𝑖
∗𝐶(𝑖)
∗

𝑛

𝑖=1

=∑𝑤(𝑖)
∗ log

(

 
 (1 − 𝐹(𝑥(𝑖)|𝜃))

𝑛−𝑖

(1 − 𝐹(𝑥(𝑖−1)|𝜃))
𝑛−(𝑖−1)

(𝑛 − 𝑖 + 1)

𝑖
𝑓(𝑥(𝑟)|𝜃)

)

 
 

𝑛

𝑖=1

−∑𝑤(𝑖)
∗ 𝑘(𝑖)

𝑛

𝑖=1

 

 
and ∑ 𝑤(𝑖)

∗ 𝑘(𝑖)
𝑛
𝑖=1  is fixed so ∑ 𝑤𝑖

∗𝐶(𝑖)
∗𝑛

𝑖=1  will be maximised for the same 𝜃 whatever the selection of 

𝑘(𝑖). 

 
As we will generally only be interested in the end answer, we will assume in this paper that 𝑘(𝑖) =

0 ∀𝑖 unless otherwise stated. However, if needed, we might choose values for 𝑘(𝑖) that have 

particular presentational attractions. For example, we might choose them so that 𝐶(𝑖)
∗ −

log 𝑓(𝑥(𝑖)|𝜃) is approximately constant for different 𝑖 if the 𝐹(𝑥(𝑖)|𝜃) are approximately equally 

spaced (which on average should be approximately the case). In situations where all the 𝑤(𝑖)
∗  are 

nearly equal then such a presentation would have the advantage of more obviously appearing to 
give nearly the same prominence to each 𝑥(𝑖). 

 
In some circumstances we may have a weighting element that is ranking dependent as well as some 
component that that is independent of rank. For example, we might want to focus on distributional 
fit in the lower tail (e.g. lower quartile) because we think that it is more relevant for risk 
management purposes and we might also view more recent data as more relevant to the estimation 
task at hand. This can be incorporated by minimising ∑ 𝑤𝑖𝑤(𝑖)

∗ 𝐶(𝑖)
∗𝑛

𝑖=1  with the 𝑤𝑖 suitably chosen 

based on (here) time observation occurred. 
 
4. Up, down and averaged tail weighted maximum likelihood estimators 
  
There is, however, a nicety that complicates the above picture. With unranked maximum likelihood, 
each 𝐶𝑖 depends only on the probability density of a single observation, i.e. 𝑥𝑖 and does not depend 
on how the data is ordered. However the 𝐶(𝑖)

∗  introduced above depend not just on 𝑥(𝑖) but also on 

the next lower observation in the ordering (via the term in (1 − 𝐹(𝑥(𝑟−1)|𝜃))
𝑛−(𝑟−1)

). Thus in the 

case where the 𝑤𝑖
∗ vary we will get a different answer depending on which way we order the 

observations or equivalently whether we use the above prescription to fit −𝑥𝑖 (with the shape of the 
distribution inverted) or 𝑥𝑖 (with the shape of the distribution not inverted). 
 
This direction dependency seems theoretically undesirable and we can circumvent it as follows: 
 
(a) We introduce one TWMLE approach which is the same as above, i.e. an ‘up direction’ tail 

TWMLE estimator that has 𝐶(𝑖)
∗ = 𝑟(𝑖)

𝑢𝑝
, where: 

 

𝑟(𝑖)
𝑢𝑝
= log

(

 
 (1 − 𝐹(𝑥(𝑖)|𝜃))

𝑛−𝑖

(1 − 𝐹(𝑥(𝑖−1)|𝜃))
𝑛−(𝑖−1)

(𝑛 − 𝑖 + 1)

𝑖
𝑓(𝑥(𝑖)|𝜃)

)
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(b) We introduce a second, ‘down direction’ TWMLE approach which uses the same underlying 
approach but with the order of observations inverted, so if we adopt the convention that 

𝑥(𝑛+1) = +∞ this has 𝐶(𝑖)
∗ = 𝑟(𝑖)

𝑑𝑜𝑤𝑛, where: 

 

𝑟(𝑖)
𝑑𝑜𝑤𝑛 = log(

𝐹(𝑥(𝑖)|𝜃)
𝑖−1

𝐹(𝑥(𝑖+1)|𝜃)
𝑖

𝑖

(𝑛 − 𝑖 + 1)
𝑓(𝑥(𝑖)|𝜃)) 

 
(c) We introduce a third ‘average’ TWMLE approach which involves the average of ‘up’ and 

‘down’ approaches and is thus independent of order direction, involving 𝐶(𝑖)
∗ = 𝑟(𝑖)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒
, 

where: 

𝑟(𝑖)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

=
1

2
(𝑟(𝑖)
𝑢𝑝
+ 𝑟(𝑖)

𝑑𝑜𝑤𝑛) 

 
5. Generalising to multivariate distributions 
 
Standard maximum likelihood can be applied to multivariate as well as univariate distributions. In 
principle we can also apply tail weighted maximum likelihood to multivariate distributions. However, 
when doing so we need to define an ordering. One way of doing this is to target a particular tail 
direction although we could also define an ordering which referred to distance from the middle of 
the distribution. 
  
6. Least squares approaches 
 
An alternative approach is motivated by the fitted cubic quantile approach described in e.g. Section 
9.5.5 of Kemp (2009) or Section 2.4.5 of Kemp (2011). A fitted polynomial estimation approach 
involves the following: 
 
(a) We assume that the plot of the observed versus expected quantile is a specific polynomial 

(e.g. a cubic), where ‘expected’ is e.g. the quantile value assuming that the distribution were 
normal with mean and standard deviation equal to the sample mean and sample standard 
deviation 

 
(b) We then choose the polynomial coefficients to minimise the (weighted) least squared 

divergence between the observed quantiles and the expected quantiles, i.e. we choose 
𝑎0, 𝑎1, … , 𝑎𝑚 to minimise∑ 𝑤(𝑖)

∗∗𝐶(𝑖)
∗∗𝑛

𝑖=1  where typically: 

 

𝐶(𝑖)
∗∗ = (𝑋(𝑖) − 𝑍(𝑖))

2
 

 
where: 

𝑍(𝑖) = 𝑎0 + 𝑎1𝑦(𝑖) +⋯+ 𝑎𝑚𝑦(𝑖)
𝑚  

𝑦(𝑖) = 𝑚 + 𝑠𝑁
−1 (

𝑖 − 1 2⁄

𝑛
) 

𝑚 =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

        𝑠 = √
1

𝑛 − 1
∑(𝑋𝑖 −𝑚)

2

𝑛

𝑖=1

 

 
and 𝑁−1(𝑥) is the inverse Normal cumulative distribution function. 
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(c) As in most cases most observations clump towards the middle of the distribution and we 
would typically be interested mainly in tail behaviour, we might choose weights that scaled 
in line with distance between consecutive expected quantile values and/or only included 
some parts of the distributional form, e.g. merely the lower quartile of observations. Using 
weights that scale in line with distance between consecutive expected quantile values 
means that visually the fit (for a quantile-quantile plot) will appear reasonably good across 
the entire distributional form, if the x-axis of our chart relates to these quantile values. 
Superposition of a weighting schema that focuses only on specific parts of the distributional 
form (e.g. between specific quantile ranges) allows us to target the best (visual) fit merely 
for that part of the distributional form in such charts. 

 
An advantage of a fitted polynomial (to the Normal quantile function) approach is that it is relatively 
simple and easy to implement given merely access to a function returning the inverse normal cdf, 
such as the NORMSINV() function in Mcrosoft Excel. However it has some disadvantages including: 
 
(i) Not all distributions have finite first or second moments, so the ‘expected’ normal 

distribution against which the actual observations might best be compared is not always 
well-posed. 

 
(ii) Not all cubics (or other polynomials) that the fitting might generate correspond to actual 

cumulative distribution functions 
 
(iii) The methodology lacks clear asymptotic properties that add lustre to maximum likelihood.  
 
(iv) The choice of weighting schema is relatively arbitrary and is difficult to interpret in a formal 

statistical sense. This is especially true for the weight to ascribe to the very last data point, as 
the distance between it and the next (notional) consecutive point further out into the tail is 
ill-posed. But even for the remaining data points it is not obvious what meaning in a 
statistical sense to ascribe to any particular weighting schema, because all that the approach 
is targeting is a good visual fit to the data (plotted in an appropriate way) in a some chosen 
part of the distributional form. At the edges of the distribution the least squares prescription 
being adopted may also be unsound as it may be assuming the wrong ‘expected’ value for 
the relevant quantile. For example, the expected value of the 1 𝑛⁄ ’th quantile of a large 
number of samples each of 𝑛 observations may not be necessarily be approximately 

𝐹−1 (
1

2𝑛
) (indeed this expected value may not exist for some distributions). 

 
The two main computational weaknesses of this approach, i.e. (i) and (ii), can both be circumvented, 
if inverse functions for target distributional families are readily available, by setting 𝑍(𝑖) to the 

corresponding inverse function for the selected distributional family, i.e. by setting 𝑍(𝑖) =

𝐹−1 (
𝑖−1 2⁄

𝑛
|𝜃) and then selecting 𝜃 to minimise ∑ 𝑤(𝑖)

∗∗𝐶(𝑖)
∗∗𝑛

𝑖=1 . We might call an approach that 

includes such a refinement a tail weighted least squares estimation (TWLS) approach. 
 
However, this refinement does not circumvent the remaining weaknesses including the difficulty of 
interpreting the end answer. For many commonly used distributional families it is also more time 
consuming to evaluate inverse functions than to evaluate pdfs and cdf so the resulting computations 
may also be more computer resource intensive than for TWMLE. 
 
7. Fitting to selected quantile points 
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A specialised use of the tail weighted least squares approach arises if the input involves (a typically 
small number of) VaR/quantile values at specified quantile points and our aim is to fit the 
distributional form so that it reproduces as closely as possible these quantile values at these quantile 
points. This might arise if we are seeking to obtain the distributional form via ‘expert judgement’ and 
the experts providing the judgemental inputs are expected to be best able to express judgements 
using VaR values, e.g. that 10% of outcomes will be greater than 𝑥1, 50% greater than 𝑥2, 90% 
greater than 𝑥3, say. If we have at least as many such judgement expressions as we have free 
parameters in the selection of the distributional form then it is relatively straightforward to modify 
the TWLS approach to identify the distributional family that best fits these judgemental inputs. The 
only specific change needed is to amend the formula for 𝑍(𝑖) to be as follows: 

 

𝑍(𝑖) = 𝐹
−1(𝑞(𝑖)|𝜃) 

 
where the 𝑞(𝑖) are the quantile points to which the 𝑋(𝑖) are assumed to relate. The approach 

described in 6 is then a special case of the above with 𝑞(𝑖) = (𝑖 − 1 2⁄ ) 𝑛⁄ . 

 
However, we have noted above that the TWLS approach has weaknesses relative to the TWMLE 
approaches described earlier. It would therefore be attractive to re-express the TWMLE approaches 
so that they too were capable of being applied to arbitrary quantile points. This can be done as 
follows, if the quantile points for which inputs are available are 𝑞(𝑖) (0 < 𝑞(1) < ⋯ < 𝑞(𝑛∗) < 1): 

 

𝑟(𝑖)
𝑢𝑝
= 𝑛 ((1 − �̅�(𝑖+1 2⁄ )) log (1 − 𝐹(𝑥(𝑖)|𝜃)) − (1 − �̅�(𝑖−1 2⁄ )) log (1 − 𝐹(𝑥(𝑖−1)|𝜃)))

+ (log(1 − �̅�(𝑖−1 2⁄ )) − log(�̅�(𝑖+1 2⁄ ))) + log 𝑓(𝑥(𝑖)|𝜃) 

 

𝑟(𝑖)
𝑑𝑜𝑤𝑛 = 𝑛 ((1 − �̅�(𝑖−1 2⁄ )) log (𝐹(𝑥(𝑖)|𝜃)) − (1 − �̅�(𝑖+1 2⁄ )) log (𝐹(𝑥(𝑖+1)|𝜃)))

+ (log(�̅�(𝑖+1 2⁄ )) − log(1 − �̅�(𝑖−1 2⁄ ))) + log 𝑓(𝑥(𝑖)|𝜃) 

 

𝑟(𝑖)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= 𝑛 ((1 − �̅�(𝑖+1 2⁄ )) log (1 − 𝐹(𝑥(𝑖)|𝜃)) − (1 − �̅�(𝑖−1 2⁄ )) log (1 − 𝐹(𝑥(𝑖−1)|𝜃)))

+ 𝑛 ((1 − �̅�(𝑖−1 2⁄ )) log (𝐹(𝑥(𝑖)|𝜃)) − (1 − �̅�(𝑖+1 2⁄ )) log (𝐹(𝑥(𝑖+1)|𝜃)))

+ log 𝑓(𝑥(𝑖)|𝜃) 

 

where �̅�(𝑖+1 2⁄ ) =
1

2
(𝑞(𝑖) + 𝑞(𝑖+1)) for 

1

2
≤ 𝑖 +

1

2
≤ 𝑛∗ −

1

2
 and we adopt the convention that 

�̅�(−1 2⁄ ) = 0 and �̅�(𝑛∗+1 2⁄ ) = 1, 𝐹(𝑥(0)|𝜃) = 0 and 𝐹(𝑥(𝑛+1)|𝜃) = 1 

 
These formulae then exactly reproduce those in section 4(c) in the special case where 𝑞(𝑖) =

(𝑖 − 1 2⁄ ) 𝑛⁄ . 
 
However, a subtlety arises that was not specifically covered in the original June 2013 version of this 
paper. If the 𝑞(𝑖) are arbitrary then it ceases to be clear what value to use for 𝑛 in the above 

formulae, as it cannot be directly derived from 𝑛∗, the number of data points supplied to the 
algorithm. An approach that approximates to the position applying if there are equally and 
completely spaced quantiles in situations where only a contiguous subset of them is available 
involves the following: 
 

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = |
𝑛∗ − 1

𝑞(𝑛∗) − 𝑞(1)
| 
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�̅�(−1 2⁄ ) = 𝑚𝑎𝑥 (0, �̅�(1 2⁄ ) −
1

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
) 

�̅�(𝑛∗+1 2⁄ ) = 𝑚𝑖𝑛 (1, �̅�(𝑛∗−1 2⁄ ) +
1

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
) 

𝐹(𝑥(0)|𝜃) = 𝑚𝑎𝑥 (0, 𝐹(𝑥(1)|𝜃) −
1

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
) 

𝐹(𝑥(𝑛+1)|𝜃) = 𝑚𝑖𝑛 (1, 𝐹(𝑥(𝑛)|𝜃) +
1

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
) 

 
Please note that ‘edge’ effects mean that this approach will not exactly reproduce the results that 
would otherwise have been returned had a more complete set of quantiles been passed to the 
algorithm but with some of these quantiles then given a weight of zero when carrying out the 
maximisation process.  
 
8. Practical application of these tools 
 
The online toolkit on Nematrian website (www.nematrian.com) includes four web service functions 
that implement TWLS and TWMLE. Each accepts arbitrary 𝑞(𝑖) as inputs (as long as 0 < 𝑞(1) < ⋯ <

𝑞(𝑛) < 1), i.e. each implements the generalised version of the relevant approach as set out in 

section 7. Each returns a vector of distributional parameter estimates that identifies the member of 
the relevant distributional family that optimises the relevant target fit characteristic. 
 
The relevant functions are: 
 
(a) MnProbDistTWLS. Returns relevant TWLS estimates. Inputs are DistributionName (more 

than 30 underlying distributions are currently supported as well as shift and scale adjusted 
variants of these distributions), InputValues (i.e. the 𝑋(𝑖) as above), Weights (i.e. the 𝑤(𝑖)

∗  or 

𝑤(𝑖)
∗∗  as above), QuantilePoints (i.e. the 𝑞(𝑖) as above) and OpeningVariableChoices (i.e. seed 

values for the search algorithm, e.g. if we were apply the algorithm to the normal 
distribution, so DistributionName = “normal” then these would be seeds for the mean and 
standard deviation respectively). 

 
(b) MnProbDistTWLSRestricted. Same as (a) but with an additional input array 

AllowParameterToVary of the same length as OpeningParameterChoices. If relevant entry in 
AllowParameterToVary is set to FALSE then parameter optimisation proceeds on the basis 
that the relevant distributional parameter cannot vary from its value as defined in 
OpeningVariableChoices. 

 
(c) MnProbDistTWMLE. Targets TWMLE. Inputs are the same as for (a) except that there is an 

additional input TWMLEDirection used to define whether the TWMLE refers to “up”, “down” 
or “average” TWMLE as above. 

 
(d) MnProbDistTWMLERestricted. Inputs are as per (c) but again with an additional input array 

allowing estimation process to apply to some but not all of the distributional parameters. 
 
The main reason for including (b) and (d) is to cater for situations where we wish to constrain one or 
more of the distributional parameters to a fixed value, e.g. we might want to force the mean to have 
a specific value. 
 

http://www.nematrian.com/
http://www.nematrian.com/MnProbDistTWLS.aspx
http://www.nematrian.com/MnProbDistTWLSRestricted.aspx
http://www.nematrian.com/MnProbDistTWMLE.aspx
http://www.nematrian.com/MnProbDistTWMLERestricted.aspx
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Corresponding quantiles for the input quantile points can then be derived using the 
MnProbDistQuantile web service function, which takes as inputs the DistributionName, a quantile 
point, q, and a vector of parameter values, ParamValues, defining the which member of the 
distributional family is being used.   
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